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SUMMARY

The lift force on a deformable liquid sphere moving in steady, plane
Poiseuille~Stokes flow and subjected to an external body force is calculated.
The results are obtained by seeking a solution to Stokes' equations for the
motion of the liquids inside and outside the slightly perturbed sphere surface,
as expansions valid for small values of the ratio of the Weber number to the
Reynolds number. When the ratio of the drop and external fluid viscosities is
small, the lift exerted on a neutrally buoyant drop is found to be approximately
one-tenth of the magnitude of the force reported by Wohl and Rubinow (ref. 1)
acting on the same drop in unbounded Poiseuille flow in a tube. The resultant
trajectory of the drop is calculated and diéplayed as a function of the exter-

nal body force.

INTRODUCTION

Understanding the dynamics of a single particle and suspensions of parti-
cles in slow viscous flow is of fundamental importance in many branches of
science and technology, such as air pollution, raindrop formation,fluidization
in the chemical process industry, blood flow, the flow of fiber suspensions in
paper making, et al. (refs. 2, 3).

The migration of a single spherical particle across the streamlines of a
nonuniform creeping flow cannot be explained on the basis of Stokes' equations,
even in the presence of bounding walls; i.e., a sphere experiences no trans-
verse force at zero Reynolds number. A transverse force does exist theoreti-
cally if inertial forces are taken into account (refs. 4, 5, 6). However,
the situation is different for flexible particles. Experimental observations

(ref. 7) reveal that at low Reynolds numbers, even when a rigid sphere experi-
ences a negligible transverse force, neutrally buoyant deforming drops (and
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flexible sblid particles) migrate rapidly across streamlines. This suggests
that the lift force which produces migration arises from the interaction be~
tween fhe particle deformation and the surrounding flow field, rather than from
an inertial effect.

Chaffey et al.(ref. 8) considered the problem of a deformable liquid sphere
in Couette-Stokes flow (linear shear). Assuming the drop to be 'close' to the
plane wall bounding the flow, they found that the effect on the deformed drop
was to produce a force tending to push the drop away from the wall. This force
has two failings when used alone as a basis for explaining the migration of drops
in plane Poiseuille flow. First, it neglects the force due to the interaction
of the parabolic profile with the resultant deformation of the drop. Secondly,
it cannot be expected to be valid when the drop is not close to the wall. 1In
fact, Karnis & Mason (ref. 9) have shown experimentally that the migration rates
calculated by Chaffey et al. are significantly larger than those which are ob-
served. The experimental observations were recorded at a considerable distance
from the walls relative to the particle size.

In this paper, the hydrodynamic force arising out of the interaction between
the incident plane parabolic flow and the sphere deformation is calculated. The
interaction between the drop and the boundary walls is neglected. The analysis
herein follows that of reference 1 wherein the case of Pciseuille flow in a

tube is considered (see also refs. 10, 11, 12).

FORMULATION

The drop surface is defined by

r=1+ £(6, ¢), (1)
where (r, 0, ¢) are spherical polar coordinates with pole fixed at the center of
the undistorted drop and the axis 6 = 0 along the direction of the undisturbed
velocity ﬁ. We denote the velocity of the fluid exterior to this surface by
3 and the pressure by p. All external lengths, velocities and stresses have been
non-dimensionalized by a , UO and uUOa_l, respectively, where a is the
radius of the undeformed drop, U0 is a reference velocity to be specified later,

and p 1is the viscosity of the fluid outside the drop. Quantities character-
izing the interior of the drop %Ee distinguished with a prime. It is assumed

that {z,p} and {v',p'} satisfy the Stokes' equations and conditions:
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where Vi represents the normal velocity component, Ve the tangential velocity

-5
vector, T, the tangential stress vector, T, the magnitude of the normal stress;

o =u"/uy R, and R, are the two principal radii of curvature of the drop surface;

1

and the dimensionless parameter € = pU T—l, where T is the constant surface ten-

sion associated with the interface betgeen the two viscous media. The pressure
p' includes a body force K per unit volume which is assumed to act on the drop
in the positive-z direction. Equation (4) is Laplace's formula for the equili-
brium between the normal stress across the surface and the tension and curvature
of the surface.

We seek the solution of equations (2) - (4) as expansions valid for small

values of € which, upon neglecting terms of 0(8), are of the form

v = v0 + € Vl’ P p0 + € Pl’
V=R re N Bt =l F oy + e ), (5)
f =¢ £, .

The solution in general will depend on the parameter 0. We shall see (eq. (6))
that the term E—lpll, which gives the internal pressure of the drop in its
spherical shape when ﬁ = 0, is needed in order to satisfy condition (4). The
deformation f is assumed to be 0(g) so that the drop is spherical when ﬁ = 0.
Upon inserting equations (5) into equations (2) and equating coefficients of each
power of € in each equation, we find that'{zi,pi,zi,p!} for i = 0, 1 satisfy
the Stokes' equations, Vp_'_1 = 0, ;0 = ﬁ at r = ©, and vy = 0 at r = »,

The boundary conditions (3) - (4) must be examined carefully in order to
determine the contributions at the various orders of €. It can be shown (ref. 1)
that the normal and tangential components of the velocity and stress vectors can

be expressed, through a small rotation, in terms of spherical coordinate com—

ponents. This small rotation is defined with the aid of two Eulerian angles,
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which are related to the deformation of the drop. A Taylor expansion about
= 1 of the quantities in equations (3) - (4) is then used to transform to an

equivalent set of boundary conditions evaluated on the undeformed sphere surface.

Finally, taking account of equations (5) yields:

0,
' =
P!y = 2/a, (6)
vo. =v.'=0,v.,=v ]}, v., =v',
Or Or 00 06’ "0¢ 0g at r = 1 N
= = '
Tore = oLTOre’ Torg =~ *Torg’
0(e),
8v0r Bfl of
vt £ 5 = [primes] = 55 Voo T cosecH 36 Vog’
vig + £ (9vye/0r) = [primes], e ro1
Vig + £ (avbalar) = [primes], &)
aTore afl af
Tipeg ¥ fl 5t 55 (TOrr - TOSG) cosecd —5 8¢ Topg™ @ [primes],
3T of 8f
_0org 1
T1ep ¥ f1 7 5r T 756 Toeg t c0sec® 55 ¢ Torr = Toge’
= o [primes]
a 2. p°
Torr = aTérr - (2 + cosecH == (31n6 e) + cosec g;i) f1 at r=1. (9)

Equations (7) involve only the O(eo) terms of the expansion, and equation (9)
gives the deformation fl in terms of the quantities determined from the O(EO)
solution. The function fl-is determined as a particular solution of equation (9)
subject to the auxiliary conditions that the volume of the drop remains constant,

and that the centroid of the drop is chosen to coincide with the origin of the

coordinate system.

PLANE PARABOLIC FLOW

We now consider U to be a plane parabolic flow represented by
=B+ 6x + vy x5, (10)
with respect to a coordinate system fixed at the centroid of the drop, where
B, § and Yy are constants. In order to relate this to plane Poiseuille flow, let

the drop be located at an orthogonal distance X = b measured from the mid-plane
between two parallel walls, one stationary, with the positive X-axis pointing
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in the direction of the other wall moving in the positive-z direction with velo-
city Uw' Suppose that the drop is moving with dimensionless velocity

¢ = dz/dt , with respect to a coordinate system fixed in the stationary wall,’
and in the same direction as the Poiseuille flow field. Then the velocity of

the flow with respect to a coordinate system fixed at the centroid of the drop

is < 2 U X
U=l—(r9-%% L+ -c
where 0 0 0 (11)
X=b>» +_ax.

-Here the reference velocity U0 = —bg G/2u where bo is one-half the distance

between the walls bounding the flow, and G # 0 is the constant applied pressure
gradient. By comparing equation (10) with equation (11) it follows that

U
pz1-&)7+5% a+d) -,
0 0 0 .
ay (12
- 2
8=t - 222y = _(a/p 2.
00 b

0]
Since the 0(80) velocity field satisfles the boundary condition 30 > ﬁﬁ
as r + «, where E is the unit vector in the z direction, it follows from the
linearity of Stokes' equations that the 0(80) solution is easily obtained as the
sum of the known flows past a liquid sphere in uniform stream, linear shear and

plane quadratic shear. From these solutions the 0(80)'hydrodynamic force fo

on the drop is calculated to be 2
o=
>
—fo = 6Tua UO[—é B + %‘-L Y k. (13)
o+l o+l

This is the drag force acting on the undeformed drop. The value of B (or
equivalently the velocity c of the drop via eq. (12))is determined so that the
body force gﬂ aBKE balances f , viz.

- o 2 o+l
B=-3mz Y~ 3k Guo

where k is the non-dimensional body force given by k = K a2 / u'UO.

) s (14

The deformation f1 is found from equation (9) to be
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f1 = f11 + le’

19 “'ig 1
f11 A 8 AL cos@ P2 (cosB), (15)
=11 “'10 1 2
£10 =70 Y T a+1 [P (cosB) i3 cos2f P (cos9) ],
where P;, Pg and Pg are associated Legendre polynomials. It is seen that the

deformation is independent of the body force.

To determine the O0(e) fields {vl,pl, vl,pl} we must solve Stokes' equations
subject to the interface boundary conditions (8) at r = 1, in addition to having
$1 vanish at infinity. It ié found that the drop does not experience any hydro-
dynamic force owing to incident linear shear (6x) and quadratic shear (sz),
considered independently. However, their combination gives rise to an additional
O(E)'flow needed to satisfy additional interaction terms in the boundary condi-
tions (8). It is this interaction field which produces a transverse force on the
drop. 1In particular, define the interaction contributions LA and Ulre by

D, @ _ D@,

tw T1re~ ‘116 1r6

1r = Vir Vir 1r’ (16)

v 1r6°’

where vii) and v{i)represent the linear shear and quadratic shear flows, con-
sidered independently. There are no contributions arising from the uniform flow
(B) in equations (16) because to 0(g) uniform flow produces no deformation of the
drop (eqs. (15)). Substituting equations (16) and analogous expressions for

the other 0(e) velocity and stress components into conditions (8) together with
the deformations (15), we find that the interaction field must satisfy, at r = 1:

ey v{2)y

Wit 3y By Yo g Vot f11 or ) = [primes] 3
- g'l oo * 5 Véé) * aaél 06
+ cosect (8351 ég) 4+ 12 a¢ é;)), , (17a)
"o * 37 (E1vgg + £12 Yo + £11 Voo )= [primes],
Yig +'§? (£ v ég) + £, ¥, é;))= [primes], /
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oo R (5 QD+t 1D ey 1D -t
* o R e - <
_mﬁﬁﬁaﬁwé£=ﬂmm] .
Orag 2 gy 1+ £y, 1§D - ik <) - 2 <)
+ conect it ) - <G + R D - <y
= o [primes]. ./
The quantity v(.) in equations (17) denotes the 0(c”) radial velocity component

corresponding to a uniform stream, linear shear flow and quadratic shear flow
for i = 0, 1, and 2, respectively, and similarly for the other velocity and
stress components.
THE LIFT FORCE AND TRAJECTORY

The O(g) interaction field can now be found by first inserting the known
deformations and 0(80) fields into boundary conditions (17). The solid spherical
harmonics and their coefficients in Lamb's general solution (ref. 13, p. 595) to
Stokes' equations: for a sphere are then chosen so that conditions (17) are satis-
fied. However, the perturbation to the O(EO) force experienced by the drop after
deformation depends only upon one solid spherical harmonic of order -2 in Lamb's
general solution (ref. 14). This 0(e) force can be expressed by

%1 = —4ﬂuera V(r3P_2),

vhere P_2 = A}é T -2 Pl(cos 0) cos ¢ (8
in the case of a parabolic flow represented by equation (10). Upon substituting

equation (14) into the computed value of the coefficient A}z; we obtain the
2
aSy X F
n=0

result % _ 19 D

>
1= %0 i, (19)

0 In

where
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@, ol k 6 2 i1
ot3
~ 16 43 3 _ 3119 2 _ 4233 321
Fn = (a+1 (a + 79) (a+4) Gi & ~ 504 © 524 @t 50 ¢ (20)
1.3 10, ,108867 2 _ 153439 28237
F1o0 =~ G~ @+ 39 (Tzgoe0 & ~ 223240 * * 15960

The direction of the force Fl is orthogonal to the direction of the undis-
turbed flow at infinity. We note that the factor Y appearing in equation (19)
causes the contributions made by the coefficients Fll and F12 to vanish when the.
quadratic shear portion of the incident parabolic flow is set equal to zero,
whereas the body force contribution appearing in the coefficient qu+remains
finite and proportional to the body force parameter k. 1In this case F1 repre-
sents the transverse force exerted on a drop when the incident flow consists of
a uniform stream plus a linear shear flow. It is observed from the detailed
calculation which has been performed that the contributions made by the coeffi-
cients Fp; and F12 to Fl arise, respectively, from interactions between (a) the
O(EO) quadratic shear flow and the linear shear deformation fll,and (b) the 0(e )
linear shear flow and the quadratic shear deformation f12 It is seen that the
interaction between O(c ) uniform stream and f12 does not contribute to the
0(e) force.

The sign of the force Fl can be determined by inspection of equation (19)
after inserting the value of b, given by equation (22). The coefficients (20)
and their sum are plotted against o in figure 1 for a neutrally buoyant drop,
when k is zero. For small o, the sum F10 + F11 + F12 is negative. In this case
the migration of the drop is always towards the point of zero velocity gradient,
viz. X = wa0/4U0. It is observed from equations (20) that, in general, the
direction of migration depends only on the parameters k/y and 0. and not upon
radial position (other than which side of the point where dU/dX= 0 the drop is).

We shall now calculate the trajectory of the drop. Its lateral velocity
&g/dt is determined by equating the Hadamard & Rybczynski drag force for a

liquid sphere to %1‘ Thus,
db ab
@& -e ¢ 0) (4U0b0 - bz) F,
0 (21)
2
F=- %% (91%9 i
a+§ n=0 n
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Integration of equation (21) yields

b = Uﬁbo + (b, - Uﬁho) e—t/T
40 1 4U ’
0 0 (22)

_ .4 3
T = bO/era F,

where bl is the initial position of the drop. The trajectory of the drop is
obtained by dividing db/dt, given by equation (21) into dz/dt = ¢, given by

equation (14). Upon integration we obtain b Uﬁ
2 — e ———
Zo__ 1 | ezl o 3_2_+UW+UW)1n by 4Ty )
b0 e(a/b )3F 3 3042 3ot+2 b2 2U0 16U2 bl Uw
0 0 0 b, ~ 4,
0 0
1 b U bl
- 7 - D& -5 (23)
0 0 0 0 0

The.ratio Uw/UO may be either positive or negative depending on the sign
of the applied pressure gradient. In undisturbed flow some layers of the fluid
will move in a direction opposite to UW when UO is sufficiently negative. The
critical pressure gradient occurs when dU/dX = 0 at X = —bo, i.e., when
UW/U0 = -4, Theoretical curves based on equation (23) are shown in figure 2(a)
for UW = 0, U0
o=20, € =0.01, a/b0 = 0.1 and b1/b0 = 0.5, and for various values of the body

> 0 and in figure 2(b) for UW/U0 = -4, for the parameter values

force parameter k. These trajectories show that the drop may move inwards or
outwards. The direction of migration as t > « for the various values of k can
be determined by examination of equations (21) and (14).

Figure 2(a) (wherein UW = () shows that the drop moves in the positive-z
direction and approaches the axis midway between the walls (b = 0) asymptotically
for k > -0.011 (to three decimal places). When k = -0.011, the drop travels
along the line b = bl in the positive-z direction. For -2.25 < k < -0.011, the
drop migrates radially outwards, initially in the positive-z direction. When
k < -2.25, the trajectories are always in the negative-z direction and radially
outwards. When the above trajectories are compared with those of a drop in
Poiseuille flow in a tube, depicted in Figure 7 of Wohl and Rubinow (ref. 1),
it is observed that there is negligible difference except in the case |k| << 1.
This observation is to be expected because when a = 0 and‘a/bo = 0.1, it is
found that F = 1.337 + 120k (to three decimal places) from equations (21) and
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(20). The value of F for circular Poiseuille flow is 10.075+ 120k (to three
decimal places). The body force parameter k dominates both expressions unless
|k| << 1. Figure 2(b) (wherein Uw/UO = =4) displays the drop meving in the
positive-z direction and approaching the stationary wall (b = —bo) asymptotically
for k < -0.011. For -0.011 < k < 6.75, the trajectories are always in the
positive-z direction and radially outwards. When k > 6.75 the drop migrates

radially outwards, initially in the negative~z direction.

SCOPE OF THE ANALYSIS
The incident parabolic flow is considered to be unbounded in the sense that
the secondary effect of the wall on the perturbed flow produced by the drop is
neglected, i.e., interaction between the drop and the boundary walls is
neglected. Also, the results herein are not applicable unless the effects of

0(e) and (nonlinear) inertial effects can be neglected.
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Figure l.- Contributions to the force fl defined by equations
(20) with the body force parameter k = 0, as a function of

the viscosity ratio q.
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Figure 2.- Trajectories of a drop in plane Poiseuille flow and
subject to a body force, according to equation (23). It is
assumed that o = 0, € = 0.01, a/b0 = 0.1, and bl/bO = 0.5. The
labels denote various values of the body force parameter

k = Kaz/u'Uo. The line b = 0 is located midway between the two
walls bounding the flow. The arrowheads indicate the direction

of migration.



